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Abstract The long-stalked Didymosphenia is capa-

ble of forming large blooms and is expanding its range.

To better understand the colonization dynamics of this

species, we investigated the role of substrate charac-

teristics—rock roughness and biofilm condition—on

Didymosphenia colonization in a montane Colorado

stream. Rocks differing in roughness (shale and

sandstone) were treated to manipulate the diatom-

dominated biofilm by scrubbing or submersion in 30%

hydrogen peroxide. Initial chlorophyll concentration

differed among rock types (sandstone [ shale) and

biofilm treatments (untreated [ scrubbed [ hydrogen

peroxide-treated). Rocks were placed in a Didymo-

sphenia bloom area for 8 days. More Didymosphenia

colonized the rougher sandstone than the smoother

shale, and more colonized stones with intact bio-

films than stones with reduced biofilms (intact [
scrubbed [ hydrogen peroxide). These results suggest

that rougher stones may be targeted for surveillance for

new populations and that the colonization of intact

biofilms is consistent with Didymosphenia’s habitat in

regulated rivers, where biofilm-scouring spates may be

suppressed.

Keywords Invasive species � Diatom colonization �
Substrate texture � Periphyton � Rock substrata

Introduction

Didymosphenia geminata (Lyngbye) Schmidt has the

notoriety of being the only invasive diatom species

with potentially large ecological (Larned et al. 2007)

and economic (Branson 2006) effects. This species

was historically reported in low numbers in several

rivers in the northern hemisphere. In the last several

years, however, reports of nuisance blooms have

become regionally common, and populations have

appeared at new sites within this range (reviewed by

Spaulding and Elwell 2007) and have occurred under

more varied environmental conditions (Kawecka and

Sanecki 2003; Bhatt et al. 2008). Additionally,

Didymosphenia has established large populations in

several rivers in the South Island of New Zealand

since its discovery in 2004 (Kilroy 2004), despite

containment strategies.

Didymosphenia is a relatively large diatom that

occurs as colonies of cells on long branching stalks.

Colonies are initially small tufts, and as the
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population grows, these tufts can grow and coalesce

into mats. In some blooms, mats cover much of the

streambed and, in New Zealand, mats may be several

centimeters thick (Kilroy et al. 2005). Mats, com-

posed primarily of stalks (Larned et al. 2007), may

accumulate fine sediments and persist longer than the

diatoms that made them (Kirkwood et al. 2007;

Spaulding and Elwell 2007). Ecological studies of

Didymosphenia blooms are ongoing, with the majority

of research centering on the extensive, invasive

growths in New Zealand (e.g., Kilroy et al. 2005;

Larned et al. 2007). Such studies have examined

associations with discharge and water chemistry,

effects of floods, nutrient limitation, effects on inver-

tebrate and fish assemblages and on water chemistry.

Using information on habitat preferences and river

characteristics, Kilroy et al. (2008) predicted the

potential geographical range of Didymosphenia within

New Zealand rivers.

There has been a paucity of research on early

colonization dynamics of diatoms, including Didymo-

sphenia. Specifically, the role of substrate character-

istics in initial settlement of diatoms and other

streambed algae has been little explored, although

crevices have been implicated as selective settlement

sites by motile zoospores of the filamentous green alga

Cladophora glomerata (Dudley and D’Antonio 1991).

In contrast, surface roughness is recognized as an

important determinant in the settlement of many

species of marine invertebrates and macroalgae on

hard surfaces.

Settling diatoms are only one component of benthic

stream biofilms, which also include organic com-

pounds and detritus, and bacteria and other microbial

organisms. Developing biofilms may obscure substrate

characteristics, including textural features, of under-

lying surfaces. For example, Blinn et al. (1980) found

differences in algal colonization among three rock

types after the first week of colonization, but this

difference disappeared after the second week because

of changes in surface characteristics as biofilms and

organic matter accumulated.

Our objective was to test whether substrate charac-

teristics (i.e., rock roughness and biofilm presence)

affected settlement and early establishment by Didy-

mosphenia geminata. This was accomplished by

means of a field experiment in which rough sandstone

and smooth shale rocks with intact or modified biofilms

were introduced into a section of the East River during

a nuisance bloom of Didymosphenia, and colonization

of Didymosphenia on these rocks was evaluated after a

colonization period of 8 days.

Materials and methods

Research sites were located in the upper East River

(Gunnison County, Colorado), where it is a second-

order unimpounded montane stream within the

Gunnison National Forest. The stream meanders

through a glacial valley and has a wide riparian zone

of short willows. The field experiment was conducted

within the town of Gothic (location of the Rocky

Mountain Biological Laboratory) at an elevation of

2,900 m. Here, the stream remains meandering, but

the higher banks support riparian conifers (Fig. 1).

The geological diversity of the watershed (Gaskill

et al. 1991) results in a diversity of igneous, sedimen-

tary, and meta-sedimentary rocks in the streambed,

which contains at least ten types of rock throughout

the areas used in this study. The smoothest rock type

in the streambed is Mancos shale and the roughest

is red-sandstone of the Maroon formation (Bergey,

unpublished data).

The diatom Didymosphenia geminata formed dense

small mats in parts of the East River during summer

2007. Mats resembled coalescing tufts of dirty cotton

and were easily visible in the stream. Didymosphenia

Fig. 1 Map of locations of the East River study sites—both

the upstream rock collection area and the downstream field

experiment site
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mats were common in the section of the East River that

passes through Gothic, but had not been found much

further upstream. Ongoing surveys had failed to find

Didymosphenia above the Gothic Road crossing on the

East River, 2 km upstream of Gothic (Brad Taylor,

unpublished data). Fifty-four river-smoothed shale and

54 river-smoothed sandstone rocks were collected

from two adjacent riffles about a half kilometer

upstream of the Gothic Road crossing, where Didymo-

sphenia did not yet occur. The underside of rocks was

marked using a wax crayon to show orientation, and

rocks were stacked in ice chests and taken to the

downstream experimental site.

Two-thirds of the rocks were processed to alter the

biofilm. Eighteen shale and eighteen sandstone rocks

were vigorously scrubbed with a brush and an equal

number of rocks were placed in 30% hydrogen

peroxide for 5 min. Processed rocks were soaked in

stream water, bagged, and put in coolers.

Directly after biofilm treatment, rocks were placed

in shallow water along the outer bend of a meander of

the East River within Gothic, where most streambed

rocks had numerous visible tufts of Didymosphenia

colonies. The upper set was in an area of coarse sand;

the lower set was in an area of mixed coarse sand and

cobbles, some of which were emergent. Six replicates

of each rock type (shale and sandstone) and biofilm

treatment (untreated biofilm, scrubbed, and H2O2-

treated) were placed in the upstream set and six

replicates were placed in the downstream set; the

marked undersides were used to prevent rocks from

being placed upside-down. Treatments were assigned

randomly within each set. Six replicates of each stone

type-biofilm treatment were returned to the lab and

refrigerated prior to chlorophyll analysis, which was

started a couple of hours later.

Rocks were placed in the East River on 1 August

2007 and were retrieved and placed in labeled bags

8 days later on 9 August. During retrieval, rocks were

lifted carefully to minimize loss of loosely adhered

material. Rocks were stored frozen. During process-

ing, rocks were placed in open-top vacuum-seal bags

with 25–50 ml of 30% hydrogen peroxide and heated

in a 78�C water bath until effervescence stopped in

15–20 min. Bags were shaken and the liquid poured

into glass settling chambers. Samples were rinsed by

settling and decanting to remove hydrogen peroxide

and the final liquid volume was adjusted to 15 ml.

Subsamples of 0.15 ml were dried onto coverslips

and mounted on microscope slides with Naphrax

mounting medium (Northern Biological Supply,

Ipswich, UK). Slides were labeled only by their

sample number, on the basis of the random location

in the field experiment; hence, the rock type and

treatment were not known during diatom counting.

Slides were viewed at 2009 with DIC, using a Leica

DMLB microscope (Leica Microsystems, Wetzlar,

Germany). All Didymosphenia valves were counted

on the slide and numbers were converted to number

of valves per square centimeter of rock using each

rock’s surface area. The planar area of each rock was

obtained by weighing prints of scanned rocks and

using the printer paper’s mass–area relationship (as in

Bergey and Getty 2006).

Rocks reserved at the start of the experiment were

analyzed for chlorophyll a concentration, as an indi-

cator of biofilm removal by the scrubbing and hydro-

gen peroxide treatments. An ethanol extraction

technique was used (Sartory and Grobbelaar 1984).

To prevent loss of ethanol during whole-rock extrac-

tion, individual rocks and 50 ml of ethanol were sealed

in vacuum-seal bags. Absorbances were measured with

a Beckman Coulter DU530 spectrophotometer (Beck-

man Coulter, Inc., Fullerton, California, USA).

Rock roughness was measured for the sandstone

and shale rocks used in the experiment, using the

method of Bergey (2006). Briefly, this method

entailed finding the ratio of two surface area measure-

ments—an idealized surface area based on the length,

width, and height measurements and a more accurate

surface area based on the weight gain when the rock

was wetted with a soap solution. The resulting

roughness value is dimensionless. Twenty rocks of

each type were measured.

Data analysis

Because rock size was variable, potential relation-

ships of (1) rock area and chlorophyll a concentration

of the initial rocks and (2) rock area and Didymo-

sphenia density of the experimental rocks were tested

using linear regression. Rock roughness was com-

pared between sandstone and shale using an unpaired

t-test.

Potential differences in chlorophyll concentration

and in Didymosphenia density among rock types and

biofilm treatments were each tested with three-way

ANOVAs (rock type or chlorophyll concentration,
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biofilm treatment, and experiment location), followed

by Tukey’s multiple comparison tests to distinguish

differing means. Experiment location was included in

the ANOVAs because differing local hydraulic

conditions, indicated by different stream substrates,

may affect settlement of Didymosphenia. To better

meet the assumptions of ANOVA, data were square-

root transformed prior to analyses. For clarity, all

graphs show non-transformed data.

The Didymosphenia density dataset included two

outliers with counts of 4.8 and 6.0 standard deviations

from the mean (Fig. 2). Because of the large effect of

these outliers on the ANOVA, these two data points

were removed from the formal statistical analysis but

were then discussed relative to the ANOVA results.

Results

Because rock size can affect chlorophyll concentration

and possibly Didymosphenia settlement, rock size was

compared among sets of rocks. Rock size ranged

between 24.9 and 80.7 cm2. There was no significant

difference in rock size between shale and sandstone

[mean (SE) 44.7 (12.4) and 45.5 (14.5) cm2, respec-

tively; t = -0.37, P = 0.71; N = 54], nor between

initial and experimental stones [mean (SE) = 42.3

(1.9) and 46.6 (1.7), N = 36 and 72, respectively;

t = -1.50, P = 0.14]. Among the experimental

stones, rock size did not differ between the two

locations or between shale and sandstone, but

differences occurred among the biofilm treatments

(ANOVA; P = 0.25, 0.21, and 0.002; respectively).

Hydrogen peroxide stones were larger than scrubbed

stones [mean (SE) = 53.9 (2.9) and 40.7 (2.1];

Tukey’s test P \ 0.05). To test whether stone size

affected Didymosphenia settlement, Didymosphenia

density was regressed against the rock size of hydrogen

peroxide-treated rocks, which had the highest size

range (26.5–72.8 cm2; Fig. 2). Rock size was not

related to Didymosphenia colonization density (regres-

sion R2 = 0.094; ANOVA, F = 2.27, P = 0.15).

Sandstone rocks used in the experiment were

much rougher than the shale rocks (t-test: t = 6.895,

P \ 0.0001). Sandstone roughness averaged 3.25

(SE = 0.34), whereas shale averaged 0.77 (SE =

0.05).

Chlorophyll a analysis showed that the biofilm

treatments at the beginning of the experiment did,

indeed, affect the biofilm (Fig. 3). Overall, sandstone

had higher chlorophyll concentration than did shale

[mean (SE) = 29.5 (4.0) and 7.4 (1.7) mg m-2,

respectively; ANOVA, F = 29.76, P \ 0.0001] and

this difference was consistent across biofilm treat-

ments. The intact biofilm (no treatment) had the

highest chlorophyll biomass, which was significantly

different from the hydrogen peroxide-treated rocks,

which had the lowest biomass (Tukey’s test,

P \ 0.05). Scrubbing the rocks produced an inter-

mediate chlorophyll biomass. Field observations were

consistent with these results—both scrubbing and

hydrogen peroxide treatment removed the slimy

Fig. 2 Regression between the rock size of hydrogen peroxide

treated rocks and Didymosphenia geminata density after 8 days

colonization in the East River. Two outlying data points are

circled

Fig. 3 Chlorophyll a concentration (used to indicate biofilm

quantity) of transplanted streambed rocks at the start at the

colonization experiment. Hydrogen peroxide and scrubbing

were used to reduce biofilm. Bars are ?1 SE

36 Aquat Ecol (2010) 44:33–40

123



brownish coating remaining on rocks with untreated

biofilms.

Substrate colonization by Didymosphenia differed

between shale and sandstone, and among the biofilm

treatments (Fig. 4). Sandstone accrued more Didymo-

sphenia than did shale [means (SE) = 130.3 (34.2)

and 47.8 (8.3) cells cm-2, respectively; F = 5.93,

P = 0.018]. The intact biofilm accrued more Didy-

mosphenia than did either of the treatments that

reduced the biofilm [mean (SE) = 145.4 (45.3), 63.0

(18.3), 50.7 (13.0]; respectively, for no treatment,

scrubbed, and hydrogen peroxide treatments; F =

3.30, P = 0.044). Didymosphenia colonization did

not differ between the upstream and downstream sets

of rocks (F = 0.61, P = 0.44).

The two outlier data points occurred in the hydrogen

peroxide-treated sandstone. Didymosphenia densities

were 2,369 and 1,929 per cm2, compared with a mean

of 87.4 valves per cm2 in the other 70 rocks. Small tufts

of Didymosphenia were noticed on a couple of

sandstone rocks at the end of the experiment, and it

was likely in the high-density rocks.

Discussion

Didymosphenia colonization differed between the

rougher sandstone and the smoother shale, with many

more colonizers on sandstone, the rougher surface.

This pattern was also noted in streams near Gothic,

where visible colonies were first seen on sandstone.

Likewise Blinn et al. (1980) found more diatom

biomass on sandstone than on basalt or limestone

after a comparable colonization period and attributed

the difference to stone roughness and/or solubility. A

subsequent experiment on the role of rock chemistry

on algal colonization (Bergey 2008) showed that rock

chemistry had little effect. Unfortunately, rock type is

seldom reported in habitat descriptions, making

larger scale evaluation of the importance of rock

type and rock roughness difficult.

Because Didymosphenia forms colonies, coloniza-

tion may occur by settlement of individual cells or by

colony fragments. The density of colonizing Didymo-

sphenia on our rock substrates was highly variable.

Two of the 72 rocks had about 2,000 valves cm-2, in

contrast to the rest of the rocks, which averaged about

90 valves cm-2, which may indicate colonization by

colony fragments on the two high-density rocks.

Although in situ production contributes to biomass

increase after settlement starts (Peterson 1996), it is

unlikely that the short 8-day colonization period

would produce such high densities on only two rocks

if colonization occurred as single cells. Indeed, the

two high-density rocks were the roughest combination

(sandstone treated with hydrogen peroxide, which

reduced the biofilm and increased direct rock surface

exposure) and colony fragments may have snagged on

these rocks. Both single cells and colony fragments

occur in the drift during blooms (cells: Kilroy et al.

2005; fragments: Cathy Kilroy, personal communica-

tion 2008); therefore, both can settle on streambed

substrates.

Rock size can affect algal biomass, but was not a

factor in this experiment. The sandstone and shale

rocks had a similar range of rock size and no

correlation was found between rock size and Didy-

mosphenia density. Similarly Kilroy et al. (2005)

found rock size unrelated to Didymosphenia density

during blooms in New Zealand.

Didymosphenia colonization was greater on intact

diatom-dominated biofilms than on disrupted biofilms,

which is consistent with the general colonization

pattern of biofilms on submerged surfaces. Diatoms

are generally not the first colonizers of bare surfaces in

streams; rather a microbial and organic layer first forms

(Barranguet et al. 2005), followed by colonization of

adnate and short-stature diatoms (Hudon and Bourget

1981). Thus, Peterson and Stevenson (1989) and Sekar

Fig. 4 Didymosphenia colonization, as density of valves, on

rocks after 8 days exposure in a section of river with a

moderate Didymosphenia bloom. Two types of rock (shale and

sandstone) and three biofilms treatments (no treatment,

scrubbed rocks, and rocks treated with hydrogen peroxide)

were tested. Bars are ?1 SE

Aquat Ecol (2010) 44:33–40 37

123



et al. (2004) found that diatoms colonized non-algal

biofilms faster than cleaned substrates. Following this

initial diatom assemblage, stalked and branched col-

onies become more abundant (Hudon and Bourget

1981; Hoagland et al. 1982; Ács et al. 2000), which was

observed in this study by the greater colonization of

Didymosphenia on intact biofilms. Korte and Blinn

(1983) found that upright diatoms, including those with

stalks, become abundant on introduced substrates after

2 weeks in riffles—a longer colonization period than

used in our study.

Rock roughness may interact with biofilm devel-

opment and indirectly affect Didymosphenia coloni-

zation. During colonization, rougher substrates

accrue greater biofilm biomass than smoother sub-

strates (Blinn et al. 1980; Clifford et al. 1992). By

promoting biofilm development, the rougher sand-

stone may be more conducive to Didymosphenia

colonization than the smoother shale.

Sites with invasive or nuisance Didymosphenia

blooms are typically rivers that are regulated, occur

below lakes, or have low variation in flow (e.g.,

Kawecka and Sanecki 2003; Kirkwood et al. 2007;

Beltrami et al. 2008), where the biofilm is little

disturbed by rain-associated spates. This study indi-

cates that habitat conditions in these rivers may

promote Didymosphenia establishment by maintaining

a biofilm suitable for Didymosphenia colonization.

The apparent selection of surface traits by settling

Didymosphenia (e.g., sandstone [ shale and intact

biofilm [ reduced biofilm) implies the possibility that

diatoms can select surfaces. Once individual diatoms

reach a surface, adhesion, movement, and release are

active processes (Cooksey and Wigglesworth-Cook-

sey 1995; Wetherbee et al. 1998) that could allow

substrate selection. Studies using marine diatoms have

demonstrated responses to physical and chemical cues

(Wigglesworth-Cooksey and Cooksey 1992; Falciato-

re et al. 2000; Thompson et al. 2008) and such cues may

be involved in diatom colonization. Texture charac-

teristics are a factor—more diatoms settle on rougher

artificial substrates than on smoother substrates (Sekar

et al. 2004; Patil and Anil 2005), and this study

demonstrated greater colonization of the rougher

sandstone than the smoother shale.

Because Didymosphenia geminata colonized

rougher rocks with intact biofilms, the use of

introduced artificial substrates (especially smooth

substrates like glazed tiles) in survey or surveillance

programs is not appropriate. Instead, surveillance

programs should target rougher in situ rocks.

Conclusions

1. Didymosphenia geminata colonized the rough

rocks (sandstone) faster than the smooth rocks

(shale). This experimental result was consistent

with field observations and indicates that sur-

veillance programs for this species might target

the rougher rock types. There is a paucity of

information on rock type and roughness in

studies of Didymosphenia and this information

might prove useful in better understanding the

species’ distribution.

2. Rock size, within the range of large gravel

to cobble, did not affect colonization by

Didymosphenia.

3. Didymosphenia colonized rocks with intact bio-

films faster than rocks with disrupted biofilms.

This pattern is consistent with Didymosphenia’s

ability to colonize and persist in regulated rivers,

where biofilm-disrupting spates are suppressed.

4. Greater understanding of the colonization

dynamics of this species may help explain the

geographical and habitat expansion of Didymo-

sphenia and help model its potential range.
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