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Public Land Survey (PLS) data have been widely used in landscape studies of forest and
woodlands in the pre- and early-European-settled Midwestern and Western United States.
We aim to reconstruct presettlement forest vegetation at a finer spatial resolution than
available from the PLS data using environmental covariates (slope, aspect, geology, and
soil type) and the spatially correlated structure of witness tree data. To accommodate
various data obtained from multiple sources while explicitly taking into account their
spatial structures, we adopt a mixed spatially correlated multinomial logit model within the
framework of a generalized linear mixed model. The application of the proposed model is
illustrated using the three most abundant tree taxa from PLS data in the Arbuckle Moun-
tains of south-central Oklahoma. To assess the influence of each source of information on
the spatial prediction, we considered four variant multinomial/spatial models and evalu-
ated their relative predictive power using a validation technique. The probabilistic infor-
mation about the spatial distribution of tree species obtained from different models reveals
the need to integrate information about witness tree data as well as environmental covari-
ates, and the nature of tree species; that is, a tendency to cluster in space to share
environmental conditions in the reconstruction of the presettlement forest vegetation
surface.

Introduction

Public Land Survey (PLS) data from the General Land Office (GLO) have been widely used to
study the composition and structure of forests and woodlands in the pre- and early-European-
settled Midwestern and Western United States (Galatowitsch 1990; Schulte and Mladenoff 2001).
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PLS data consist of two components useful for landscape analysis: township plats, on which
surveyors mapped general landscape characteristics, and surveyor notes, in which surveyors
recorded information about so-called witness trees encountered along survey lines (White 1983;
Whitney and DeCant 2001). Although the earliest research using PLS data investigated spatial
changes in land cover types on the GLO plats (Fassett 1944; Curtis 1956), the witness tree records
have been the primary focus of many subsequent ecological studies (Brown 1998; He et al. 2000;
Manies and Mladenoff 2000; Cogbill, Burk, and Motzkin 2002; Wang 2007; Fagin and Hoagland
2011).

Although researchers have utilized PLS data for analysis of the spatial patterns of tree
species, quantifying the areal extent of selected woody taxa from these data is problematic
because of the coarse sampling structure of the data. Surveyors recorded witness trees at 0.8 km
(0.5 mile) intervals, which correspond to the intersections of section lines and quarter-section
points. In an effort to overcome these spatial limitations in PLS data, researchers have attempted
to convert discrete PLS point data into continuous surfaces for more accurate landscape scale
studies (Batek et al. 1999; He et al. 2000; Manies and Mladenoff 2000; Wang and Larsen 2006;
Wang 2007; Fagin and Hoagland 2011).

In general, two broad approaches have been taken. The first involves analyzing the relation-
ship between individual woody plant taxa and a set of environmental covariates using various
environmental regression models (He et al. 2007; Franklin and Miller 2009; Fagin and Hoagland
2011). Implicit in this approach is the assumption that sets of relevant environmental covariates
are available at the proper spatial and temporal resolution to analyze historical species–
environment relationships adequately. In practice, such data may not be readily available, and
those readily available may be omitted in the model fitting process. In addition, the relationship
between environmental covariates and tree species occurrences often is assumed to be consistent
over the entire study region, whereas its influences may be regionally or spatially heteroscedastic.

The second approach focuses solely on the spatial patterning of the witness tree data
independent of any environmental covariates that may or may not influence the distributional
patterns (Delcourt and Delcourt 1996; Manies and Mladenoff 2000; Wang and Larsen 2006). In
this approach, the spatial autocorrelation of tree species occurrences often is the interest of the
study, particularly with respect to the spatial scale at which an analysis is conducted. The
discrepancy between the scale of the data (point support) and the scale of analysis (nonpoint
support) has drawn the attention of researchers, as is evidenced by the development of spatial
statistical models designed to resolve scale issues utilizing spatial autocorrelation in tree species
occurrences (He et al. 2000; Manies and Mladenoff 2000; Friedman, Reich, and Frelich 2001;
Wu 2004; Wang and Larsen 2006; Yoo and Trgovac 2011). However, spatial autocorrelation
alone may not be sufficient to reconstruct fine-scale interaction between environmental condi-
tions and tree species occurrences (Manies and Mladenoff 2000; Rathbun and Black 2006).

In this article, we propose a model that incorporates both environmental covariates and
spatial structure (which may act as a surrogate for various biotic covariates in the spatial
prediction model for vegetation) to reconstruct presettlement forest vegetation at a finer spatial
resolution than available from the PLS data alone. Given that the genus and/or species name of
a tree recorded at each point takes one of multiple categories, a multinomial generalized linear
model (GLM) is a natural choice for analysis. The use of the multinomial model in the spatial
distribution of tree species allows us to generalize existing models in which tree data are modeled
individually, species by species, ignoring the presence or absence of other tree species. The
proposed multinomial model simultaneously takes into account more than one tree species in a
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consistent manner. A spatial dependence structure of tree taxa occurrences and the spatial
structure of environmental covariates are explicitly incorporated within a framework of gener-
alized linear mixed models (GLMMs) in the absence of independence.

In practice, various ways exist to accomplish the GLMM modeling (Bolker et al. 2009). For
example, Diggle, Tawn, and Moyeed (1998) employ GLMMs for spatially dependent non-
Gaussian variables observed in a continuous region and present a formal framework for param-
eter inference in a geostatistical setting using the Markov chain Monte Carlo (MCMC) technique.
We follow the same paradigm of incorporating the latent spatial process through random effects,
but we achieve computational simplicity by using a direct approximation approach (Cao,
Kyriakidis, and Goodchild 2011). The covariance function of the latent spatial process is directly
approximated by a mixture of the spatial covariance functions of observed data, and a posterior
density function is represented via a multinomial logit linear combination of these approximated
covariances. Furthermore, we extend the model of Cao, Kyriakidis, and Goodchild (2011) to
include auxiliary variables to account for the influence of environmental covariates on the witness
tree data.

We illustrate our approach using the three most abundant tree taxa in the 1870’s PLS data
from the Arbuckle Mountains of south-central Oklahoma: post oak (Quercus stellata), black oak
(Quercus velutina), and elm (Ulmus spp.). We assess the effects of environmental covariates and
spatially dependent structure on the witness tree model by comparing spatial predictions obtained
from four models: (1) a multinomial logit model (nonspatial environmental regression, Model I);
(2) an indicator kriging model (a traditional geostatistical model without environmental covari-
ates, Model II); (3) a mixed spatially correlated multinomial logit model without environmental
covariates (a GLMM without predictors, Model III); and (4) a mixed spatially correlated multi-
nomial logit model with covariates (an environmental regression model with spatially correlated
random effects, Model IV). The covariates used for the two environmental regression models
include soils, geological substrates, aspect, and slope. The goal of model comparisons is twofold:
to test the effect of spatial autocorrelation of the tree species occurrences by comparing Model I
and the other three spatial models, and to assess the effects of environmental covariates on model
performance by comparing purely spatial models (Models II and III) with environmental regres-
sion models (Models I and IV). Particularly, the comparison between Models III and IV allows
us to measure a direct impact of environmental conditions on a spatial model.

For a model assessment, we use cross-validation, where a randomly selected subset (10%) of
observed data is temporarily discarded and the class occurrences at the same locations are
predicted using the remaining sample data. The cross-validation exercise is iteratively performed,
and its result is summarized by the correct classification rate.

Methods

This section opens with a description of the study area, with a consideration of climate, soil, and
potential natural vegetation. We then provide an overview of the components of our modeling
approach—a mixed spatially correlated multinomial logit model—followed by a description of
model fitting and prediction.

Study area and data set
The Arbuckle Mountains constitute a spatially heterogeneous region that increases in elevation
from approximately 229 m to 411 m along an east-west axis (Dale 1956) (Fig. 1). The Arbuckle
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Mountains were formed in conjunction with the Ouachita orogeny in the Pennsylvanian era. The
region experienced considerable faulting and folding, which produced an anticline and exposed
late Cambrian to middle Mississippian limestone sedimentary rocks (Fairchild, Hanson, and
Davis 1990; Suneson 1997). Precambrian rhyolite and granite form extensive outcrops, though
the largest of these are in the eastern portion of the study area (Ham 1969; Fairchild, Hanson, and
Davis 1990).

As evidenced in earlier studies (Rathbun and Black 2006; He et al. 2007; Fagin and
Hoagland 2011), environmental conditions to which tree species respond play an important role
when reconstructing the spatial distribution of forest vegetation in a landscape. In our study, we
selected four predictors that have varying degrees of influence on each tree species. Table 1 lists
the covariates used in the current study and provides a brief description of each variable (see
Fig. 2(b)–(e) for their spatial distributions). While each environmental covariate has a nontrivial

Figure 1. The study area of the Arbuckle Mountains encompasses the south-central part of the
state of Oklahoma, United States.

Table 1 Description of Environmental Covariates

Type Interval/Categories Source

Slope (X1) Continuous [0, 58] USGS
Aspect (X2) Categorical 9 USGS
Geology (X3) Categorical 7 USGS
Soil (X4) Categorical 5 NRSC STATSGO
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relation with the selected tree taxa, the set of four does not represent the complete range of abiotic
factors important for tree distributions.

The predominant surface formations in Oklahoma are Permian and Pennsylvanian sand-
stones, making the Arbuckle Mountains a calcareous island in a sea of sandstone. The limestone
and dolomite substrates, which constitute 69% of the surface rocks, produce clay soils that foster
calciophilic species such as black prairie clover (Dalea frutescens), Ashe juniper (Juniperus
ashei), seep muhly (Muhlenbergia reverchonii), and bastard oak (Quercus sinuata var. brevi-
loba). Shallow soils characterize areas where granite and rhyolite are common (16.4%).
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Figure 2. (a) Survey locations of the three most abundant tree species: post oak, black oak, and
elm. (b) Slope at 30 × 30 m spatial resolution. (c) Aspect: N, NE, E, SE, S, SW, W, NW, flat.
(d) Geology types: shale/limestone (g1), shale (g2), limestone (g3), Oil Creek sandstone (g4),
Bromide sandstone (g5), granite (g6), other type (g7). (e) Soil types: Shidler-Scullin-rock
outcrop-Lula-Claremore (s1), Shidler-rock outcrop (s2), Kiti-rock outcrop (s3), Chigley-Agan-
rock outcrop (s4), Reinach–McLain–Dale (s5).
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Although the soils are derived from either calcareous or igneous substrates, they share one
feature: shallow depth. The most extensive soil type in the Arbuckle Mountains is the Shidler-
Scullin-Lula-Claremore-rock outcrop complex, a silty clay loam that covers the greatest aerial
extent (37.7%). Depth averages 20.5 cm, with slightly acidic to mildly alkaline pH. It occurs
primarily on fractured limestone on 2%–8% slopes, and individual patches range from 16.2 to
121.4 ha (Bogard 1973; Burgess 1977; Watterson, Bogard, and Moebius 1984). The Kiti-rock
outcrop complex is a clay loam soil that occupies 27.4% of the study area and consists of
moderately alkaline loam of very shallow, well-drained soils. Patch size ranges from 40 to
242.8 ha on steep slopes (8%–20%) (Bogard 1973; Burgess 1977). The Chigley-Agan-rock
outcrop complex consists of gravelly to sandy loam, 5%–12% slope over conglomerate. It
constitutes 15.7% of soils in the Arbuckle Mountains in patches ranging from 2.0 to 20.2 ha. Soil
pH ranges from medium acidic to neutral (Burgess 1977; Watterson, Bogard, and Moebius 1984).
The remaining soil types occur in small patches scattered throughout the study area. The most
extensive of these are bottomland soils derived from alluvium along large streams. The Reinach–
McLain–Dale association constitutes the majority of these soils and occurs on the floodplains of
the Washita and Blue rivers. These are sandy-loamy soils that are deep and nearly level, and that
are neutral to slightly alkaline (Burgess 1977).

The slope and aspect data at each survey location were derived from a digital elevation model
with a spatial resolution of 30 × 30 m. Although the elevation range of the Arbuckle Mountains
is insufficient for true altitude effects, the spatial complexity of the locale results in the production
of numerous microhabitats. These deep ravines and closed canyons foster many plant species that
prefer mesic conditions. Likewise, the rugged topography creates natural firebreaks that allow
fire-intolerant plant species to thrive.

A mixed spatially correlated multinomial logit model
Information extracted from the witness tree data includes point-to-plant distance (from the
intersection of section lines or quarter-section points), bearing from the point to plant, diameter
of the tree, and an identification of the tree by common name. In most cases, the common names
can be cross-referenced with current taxonomic resources to determine the proper genus and/or
species name. For modeling purposes, we use only the identification of the tree species and their
locations from the GLO data. The species name assigned to each witness tree is represented
by a categorical random variable (RV), C(u), which may take one of several discrete values
k ∈ {1, 2, 3, 4} depending on the species name recorded at a survey site u in the study domain
D. The three most abundant tree taxa—post oak, black oak, and elm—are coded as 1, 2, and 3,
respectively, and other tree species are coded as 4.

A set of species labels of witness tree data obtained at n = 2,561 survey locations is viewed
as a realization of the joint RVs {C(ui), i = 1, . . . , n}. That is, C(ui) becomes an indicator variable
δk(ui) that takes the value 1 if the survey record indicates the kth tree species occurrence
(C(ui) = k) at the ith survey site, and 0 otherwise. Let πk(ui) denote the probability, Prob, of the
kth tree species occurrence at the ith survey site,

πk i iProb C k ku u( ) = ( ) ={ } =, , , .1 4… (1)

Assuming that the response categories are mutually exclusive and collectively exhaustive, the
sum of the probabilities πk(ui) > 0 for each category adds to 1; that is, πk ik

u( ) =
=∑ 1

1

4
. The

probability distribution of RV C(ui) is given by the multinomial distribution with parameter m and
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the vector of corresponding response probabilities π(ui) = [πk(ui), k = 1, . . . , 4]; that is, C(ui) ∼
Multinomial(m, π(ui)) with m independent observations m mkk

= =
=∑ 1

1

4
where mk = 1, mk′ = 0,

∀k, k′ = 1, . . . , 4, k ≠ k′. The probability mass function of such a multinomial RV is given as
follows (Agresti 2007):

Prob m m m m
m

m m
i

m
i

m
1 2 3 4

1 4
1 4

1 4, , ,
! !

.{ } = ( )[ ] ( )[ ]
�

�π πu u (2)

Perhaps the simplest approach to model such a tree species occurrence probability as given in
equation (1) is to establish a linear relationship between non-Gaussian-distributed response
variables and environmental covariates via a link function within a GLM framework. Logistic
regression, in particular, is one of the best established frameworks to describe how tree species
occurrence probabilities depend on a (1 × q) vector of environmental covariate values xi = [xl(ui),
l = 1, . . . , q] at a survey site ui (Austin and Cunningham 1981; Margules, Nicholls, and Austin
1987; Franklin and Miller 2009). We assume that the log-odd ηk(ui) of each tree species
occurrence relative to a baseline or reference category (other type, k = 4) may be described by a
linear model as follows:

η π
π

αk i
k i

i
k i k ku

u
u

x( ) = ( )
( )

⎛
⎝⎜

⎞
⎠⎟

= + =log , , , ,
4

1 2 3b (3)

where the parameter αk is an intercept, and βk = [βkl, l = 1, . . . , q]T is a (q × 1) vector of regression
coefficients for the kth tree species associated with q covariates. This model is analogous to a
logistic regression specification, except that the probability distribution of the response is mul-
tinomial instead of binomial, which yields more than one equation for each tree species. This
multinomial logit model also may be written in terms of the probability of species occurrences
instead of log-odds as follows:

π η

η
k i

k i

k ik

u
u

u
( ) = ( ){ }

+ ( ){ }′′=∑
exp

exp
.

1
1

3 (4)

The multinomial logit model (Model I) for each tree species (post oak, black oak, or elm) in
equation (3) is location independent, with its predicted probability at any location u ∈ D being
determined by prevailing environmental conditions. The effect of the environmental conditions
on the tree species of interest in the study area is modeled by parameters βk.

As noted in previous studies (Hooten, Larsen, and Wikle 2003; Rathbun and Black 2006; He
et al. 2007; Wang 2007; Yoo and Trgovac 2011), the local abundance of a tree species is
characterized by spatial clusters. Such spatially structured variations of a tree species distribution
might result from omitted predictors. It also might be a natural reflection of spatial correlation or
spatial random effects of ecological processes at a landscape level. One can accommodate such
spatial random effects in a multinomial logit regression model by introducing latent variables. We
can extend a GLM in equation (4) to a GLMM by including random effects, where the spatially
correlated structure of tree species is taken into account by a linear predictor.

Let Sk(u) denote a spatially correlated latent variable for the kth species with the collection
of such latent variables {Sk(u), u ∈ D} within a study domain D constituting a Gaussian random
field (GRF), which is characterized by a mean function μk(u) = E{Sk(u)} and a positive definite
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covariance function σS k kk Cov S Su u u u, { , }′( ) = ( ) ′( ) (Chilès and Delfiner 1999). Under the sta-
tionarity assumption, the mean function of such a spatial Gaussian process is a constant μk(u) =
μk for all u ∈ D, and σ σS Sk ku u h, ′( ) = ( ) where u′ = u + h; that is, the covariance function
depends only on a separation vector difference between any two locations u, u′ ∈ D. Without loss
of generality, we further assume a zero mean for Sk(u), μk = 0, for k = 1 . . . , 4. In any such
process, the spatial RVs at any collection of locations follow a multivariate Gaussian distribution
with a mean vector 0 and a covariance matrix SS Sk k D= ′( ) ′ ∈[ ]σ u u u u, , , , where the covariance
function σSk u u, ′( ) can be modeled as a function of hyperparameters θk = {nugget, range, sill}
that completely characterize the spatial dependence in the underlying process; that is,
cov S Sk k S kku u u u( ) ′( ){ } = ′ −( ), ;σ q (Diggle, Tawn, and Moyeed 1998; Schabenberger and
Gotway 2005).

Assuming that the underlying distribution of tree species occurrences in the study region
depends on characteristics of the environmental conditions as well as the spatial dependence
present in tree data, the following general model may be posited by combining the multinomial
and the spatially correlated random effects:

η αk i k i
T

k k iS ku x u( ) = + + ( ) =b , , , ,1 3… (5)

where S D MVNk Sku u 0( ) ∈{ } ( ), ,~ S denotes a zero mean stationary GRF, and the GRF being
independent among the K tree species, that is, Cov{Sk(u), Sk′ (u)} = 0, if k ≠ k′.

Model fitting and spatial prediction
Model fitting and statistical inference for the GLMMs in equation (5) are challenging, but not
formidable, particularly when the latent (directly unobservable) random effects are spatially
correlated. MCMC sampling-based methods are commonly resorted to in order to infer the
distribution of the correlated latent variables and estimate the model parameters (Liang and Zeger
1986; Diggle, Tawn, and Moyeed 1998; Hooten, Larsen, and Wikle 2003; Wikle 2003;
Christensen 2004; Schabenberger and Gotway 2005; He et al. 2007). However, such methods
tend to have convergence issues and suffer from an extremely heavy computational burden. We
adopt the approximation method following Cao, Kyriakidis, and Goodchild (2011) to incorporate
the spatial effects in the witness tree modeling, while alleviating the previously mentioned issues,
and further extend it to accommodate environmental covariates.

Unlike multinomial logit models, the mixed spatial multinomial logit models need to be
evaluated per prediction location. At a prediction location u0, the conditional probability distri-
bution of the kth tree species occurrence is

πk Prob C k P C kc S u u c S u c S, , ,0 0 0( ) = ( ) ={ } = ( ) ={ }
likelihood

� ������ ������� � ��� ���
P dc S S{ }∫
prior prob.

, (6)

where c = [δk(ui), i = 1, . . . , n, k = 1, . . . , 4]T refers to the indicator-coded multinomial tree
species data at n survey sites, and S = [Sk(ui), i = 1, . . . , n, k = 1, . . . , 4]T denotes specific
knowledge about the random field.

Typically, the conditional probability estimate ˆ ,πk c S u0( ) at the prediction location u0 is
obtained by computing the full joint probability distribution Prob{∩kC(ui) = k, i = 0, . . . , n, k = 1,
. . . , 4} across data locations and a prediction location, but we use its estimate informed from
sample data. More specifically, we assume that the posterior probability distribution of the latent
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variable Sk(u) is a multivariate Gaussian RV, and observed data, given such multivariate Gaussian
latent variables, are conditionally independent. Then, the posterior distribution of latent variables
can be determined by the conditional posterior for fixed effects parameters αk and βk and the
conditional posterior for the random effects θk. These unknown model parameters, {αk, βk, θk} for
k = 1, . . . , 4, typically are obtained by integrating the likelihood function for a GLMM with respect
to the latent random field S, while the calculus-based integral in equation (6) is computationally
intractable. To achieve this goal, we relied on a numerical method for approximation, such as a
Laplacian approximation (Raudenbush, Yang, and Yosef 2000; Rue, Martino, and Chopin 2009).

The class-occurrence probability at a prediction location u0 is approximated by replacing the
integral in equation (6) by the maximum a posteriori (MAP) estimate s S csk P* argmax= { },
which takes the form of a weighted linear combination of covariance values between any
observation point and the prediction location; that is, Sk k i S i ki

n

k
* , ;0 0=1

u u u u( ) = ( ) ( )∑ ω σ q (Cao,
Kyriakidis, and Goodchild 2011). The weight ωk(ui) for the kth category at the ith datum location
ui carries the information about the presence/absence of the kth tree species at all n data locations
while accounting for redundancy. Therefore, the predicted kth tree species occurrence probability
at a location u0 is rewritten using the MAP estimate of Sk* 0u( ) as

ˆ
exp ˆ

exp ˆ

exp ˆ ˆ

π
η

η

α
k

k

kk

k
T

k kS
u

u

u

x
0

0

01

3

0

1
( ) = ( ){ }

+ ( ){ }
=

+ +

′′=∑
b **

exp ˆ ˆ *
, , , ,

u

x u

0

0 01

3
1

1 3
( ){ }

+ + + ( ){ } =
′ ′ ′′=∑ αk

T
k kk

S
k

b
… (7)

where x0 = [xl(u0), l = 1, . . . , q] denotes the vector of environmental covariate values at the
prediction location u0, and α̂k and b̂k denote the maximum likelihood estimates of regression
model coefficients.

In the absence of environmental covariates (Model III), the covariance matrix for the
zero mean stationary latent spatial field {Sk(ui), i = 1, . . . , n} for each type of tree species
(k = 1, . . . , 4) could be obtained using a mixture approach (Cao, Kyriakidis, and Goodchild
2011). That is, under the assumption of a common covariance function σS(ui, uj; θ) shared by all
tree species, we can estimate the log-odds ηk* 0u( ) for the kth tree species as a weighted linear
combination of the common covariance values at n survey sites. In the mixture approach, the
common covariance values are estimated as a linear combination of estimated indicator covar-
iograms σ̂S i j kk u u, ; q( ) for each species weighted by its global proportion τk′ for each tree
taxa as

η ω σ ω τ σk k i S i
i

n

k i
i

n

k S ik
* , ; , ;0 0

1 1
0u u u u u u u( ) = ( ) ( ) = ( )

= =
′∑ ∑ ′

ˆ ˆq q ′′
′=

( )∑ k
k 1

4

, (8)

where the sum of the global proportions equals 1; that is, τ ′′=
=∑ kk

1
1

4
.

However, to take into account the spatial effects of selected covariates in the proposed model
(Model IV), we further extend the preceding mixture approach in equation (8) to include
environmental covariates as an external drift. Thus, the log-odds estimate η̂k u0( ) for Model IV is

ˆ ˆ ˆ ˆ , ;, , ,η α β ω σ θk k l k l
l

q

i k k S i k
i

n

x ku u u u0 0
1

0
1

( ) = + ( ) + ( )
=

′ ′
=′

∑ ∑ ′
kk =
∑

1

4

, (9)

where ˆ , ,ωi k k′ denotes a weight for the ith datum with respect to the k′th species applied to
the latter’s covariance function, denoted as σ̂S i kk′ ′( )u u0, ; q , specified by the parameters θk′,
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k′ = 1, . . . , 4. For each σ̂S i kk′ ′( )u u0, ; q , we follow the covariogram fitting procedure that is
commonly used in geostatistics, which first computes the empirical covariances based on
observed data and then fits the desirable covariance function parameters θk′ through weighted
least squares methods. With the covariogram parameter estimates q̂ ′k , one can readily obtain the
vectors of fixed effects parameters αk, βk and the vector of weights for covariograms ωk = [ωi,k′,k,
i = 1, . . . , n, k, k′ = 1, . . . , 4] by maximizing the likelihood or minimizing a loss function.
Consider an (n × 1) vector of indicators j(ui) = [j1(ui), . . . , j4(ui)]T that represents which class ui

belongs to, where jk(ui) = 1 if c(ui) = k, and zero otherwise. The loss function ℓ(Θ) for unknown
parameters Θ = [Θk, k = 1, . . . , 4] for each species can be written as

� Q Q Q( ) = − ( ) ⋅( )( ) − ⋅( ){ }⎡
⎣⎢

⎤
⎦⎥

′
′==
∑j u u ui

T
i

T
i k

ki

n

Σ Σ, log exp ,
1

4

1
∑∑ , (10)

where Q w bk k
T

k k
T T= [ ]α denotes the (n + q + 1) × 1 vector of unknown parameters for the kth

tree species, and Σ(ui, ·) is the ith row of the covariance matrix Σ, which consists of (n × n)
data-to-data covariance matrix SS S i jk i j n k= ( ) = =[ ]σ u u, 1 1 4, , , , , , ,… … and the (n × (q + 1))
design matrix F = [xl(ui), i = 1, . . . , n, l = 0, . . . , q] as Σ = [ΣS F].

Because of the large number of unknown parameters, minimization of the logistic loss
function given by equation (10) may suffer from overfitting problems. As an alternative, we adopt
the so-called grouped least absolute shrinkage and selection operator (LASSO) regularization
(Yuan and Lin 2006), where the unknown parameters Θ are grouped according to the covariates,
and regularization parameters are assigned to each group. With this regularization, the loss
function in equation (10) can be written as a combination of the L1 norm,1 which produces a
sparse solution by penalizing the regression coefficients to zero, and the L2 norm,2 which yields
soft penalization on the coefficients. The minimization of grouped LASSO takes the form of a
constrained convex optimization problem, which we solved using a recently proposed efficient
algorithm, namely the projected Quasi-Newton method, to obtain optimal parameter estimates
(Schmidt et al. 2009).

Results and discussion

This section consists of a data and model output summary, followed by results for spatial
predictions and model validation. It includes a detailed discussion of model performance and
comparison of statistical techniques. The ecological response of the three species to abiotic
variables is interpreted as well.

Data summary
We used a total of 2,561 witness tree data points obtained from the 1870’s survey. For modeling
the distributions of trees, we focused on the three most abundant taxa—post oak (48.0%), black
oak (20.2%), and elm (12.8%)—and recategorized the rest of the species as other type (19%).

As shown in Fig. 2(a), post oak is the most abundant tree species, with a strong concentration
in the southern portion of the study area, while black oak is more evenly distributed, with a few
clusters in the central and east regions of the study area. In contrast to the two oaks, the elm’s
spatial distribution is concentrated in the northeast side of the study area. The spatial distributions
of all three species show the presence of spatial clusters but with different intensities.

Environmental covariates used in the current study consist of slope, aspect (N, NE, E, SE, S,
SW, W, NW, flat), geology surface material (shale/limestone, shale, limestone, Oil Creek
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sandstone, Bromide sandstone, granite, other type), and soil type (Shidler-Scullin-rock outcrop-
Lula-Claremore, Shidler-rock outcrop, Kiti-rock outcrop, Chigley-Agan-rock outcrop, Reinach–
McLain–Dale). Categorical covariates, such as aspect, geology, and soil type, are transformed
into a set of binary 0–1 indicator variables.

Statistical models and model estimation
Reconstructed spatial distributions of presettlement vegetation abundance depend on multiple
factors, including the spatial structure of witness tree data and environmental conditions. While
the proposed mixed spatial multinomial logit model can accommodate various data simultane-
ously, other model specifications may not. The four statistical models used to describe presettle-
ment vegetation reconstruction can be categorized into an aspatial environmental regression
model in equation (3) and spatially explicit models, with and without environmental covariates
(see Table 2).

A multinomial logit regression model (Model I) with more than two outcomes is a gener-
alization of the standard logistic regression model for two outcomes. That is, the counts in
different types of tree species have a multinomial distribution, which specifies the probability for
each possible way a witness tree species observed at a survey location ui(i = 1, . . . , n) can fall
in one of the four categories (k = 1, . . . , 4). Alternatively, someone may collapse all levels of
outcomes to binary per tree species so that the presence/absence of each tree species is indepen-
dently modeled. This view aligns with a traditional geostatistical model (Model II), the following
indicator kriging specification with the use of spatial structure information (Chilès and Delfiner
1999):

ˆ ˆ ˆ , , , ,π λ δ τ τk i k i k
i

n

k ku u u0 0
1

1 4( ) = ( ) ( ) −[ ] + =
=
∑ … (11)

where δk(ui) denotes the kth tree species being observed at the ith survey location ui, and τ̂k

denotes the estimated global proportion of the kth tree taxa, which is assumed to be constant
across the study region. The indicator kriging weights for the prediction location u0 are denoted
by λi(u0).

Mixed spatial effects models (Models III and IV) are linked to Model I to accommodate
multicategorical outcomes of a response variable but are also related to Model II explicitly to take
into account spatial structure of tree data. The major difference between mixed spatially corre-
lated models and indicator kriging lies in the representation of witness tree data. Model II is a
species-specific spatial prediction model whereas Model III can accommodate more than one
species at a time. That is, the probability of post oak occurrence at a prediction location may be
linked to black oak or elm occurrence probabilities in Model III, but not in Model II. However,
this does not mean that Model III can accommodate species co-occurrences. The unit of analysis

Table 2 Prediction Models

Environmental
excluded

Covariates
included

Spatial structure Excluded — I
Included II and III IV
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for all four prediction models is point support because each datum is associated with a unique
survey location. No two tree species coexist at a single location with such a framework. Scaling
up the unit of analysis to nonpoint support would allow us to apply a multivariate logistic
regression model to model species co-occurrences (Ovaskainen, Hottola, and Siitonen 2010).

The environmental regression model (Model I) reveals some interesting associations
between tree distributions and the covariates, particularly those for the geology and soil compo-
sition of the study area. Table 3 summarizes the multinomial logit regression results. Neither
slope nor aspect has a high correlation with two of the three most abundant tree taxa, with elm
being the exception, which might be due to a relatively flat landscape for the study area. In
contrast, both geology and soil composition have a strong correlation with tree occurrences. In
particular, black oak has a statistically significant relationship across all categories of geological
type. These results reveal that Bromide sandstone (g5) is a statistically significant predictor
across all three tree taxa, with varying degrees of magnitude. The major soil type in the southeast
part of the study region, Chigley-Agan-rock outcrop (s4), shows a positive relationship with all
three tree taxa, where its correlation with post oak is stronger than with the others. Both
Shidler-Scullin-rock outcrop-Lula-Claremore (s1) and Shidler-rock outcrop (s2) have a relatively
strong correlation with all three taxa. We considered only the main effects of environmental
variables because the examination of residuals shows the presence of heteroscedasticity when
interaction between elevation and geology or soil type is included. While there is no single

Table 3 Estimated Parameters (Standard Errors) of the Multinomial Logit Models

Post oak Black oak Elm

Intercept −0.20 (0.531) −1.72† (0.000) −2.81 (0.000)
Slope (X1) −0.00 (0.947) −0.00 (0.928) −0.02*‡ (0.061)
Aspect (X2) N −1.14 (0.112) −25.99 (1.000) 0.74 (0.357)

NE 0.27 (0.300) 0.04 (0.907) 0.83* (0.051)
E 0.35 (0.164) 0.03 (0.917) 1.22 (0.002)
SE 0.41* (0.086) 0.43 (0.104) 1.16 (0.002)
S 0.27 (0.242) 0.12 (0.650) 1.16 (0.002)
SW 0.41* (0.078) −0.03 (0.911) 1.34 (0.000)
W 0.11 (0.618) 0.19 (0.456) 1.26 (0.001)
NW 0.09 (0.694) 0.07 (0.784) 1.31 (0.001)

Geology (X3) g1 −0.15 (0.535) 0.93 (0.005) 0.59 (0.135)
g2 0.84 (0.001) 1.41 (0.000) 0.94 (0.022)
g3 0.09 (0.733) 1.19 (0.000) 1.22 (0.002)
g4 0.33 (0.234) 1.02 (0.005) 0.60 (0.163)
g5 0.56 (0.029) 1.21 (0.000) 1.03 (0.011)
g6 0.49 (0.150) 0.92 (0.035) 0.50 (0.313)

Soil (X4) s1 0.43* (0.058) 0.77 (0.004) 0.62* (0.053)
s2 0.45* (0.056) 0.50* (0.075) 1.33 (0.000)
s3 0.00 (0.991) 0.31 (0.217) 0.06 (0.836)
s4 1.81 (0.000) 1.65 (0.000) 1.64 (0.001)

Deviance 6050

†Bold type indicates the significance level <0.05.
‡Asterisk indicates that the significance level is 0.10.
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goodness/lack-of-fit test for a multinomial logit regression, deviance statistics often are used for
a global test of model fit (Goeman and Cessie 2006; Agresti 2007). The deviance statistic for the
full model (with four environmental covariates) is 6,050, which indicates that the model is
adequate. The sensitivity of a multinomial logit model to covariates is assessed by comparing
deviance statistics as shown in Table 4. The deviance statistic increases as a subset of covariates
is used, and the statistic is high when either soil or geology is dropped. Despite the statistically
significant association between elm distribution and aspect shown in Table 3, the aspect has a
minimum effect on the global model fit. We suspect that this result might be due to the uneven
distribution of species; that is, elm takes only 12.8%. In summary, Model I explains some but not
substantial variation of tree species occurrences whereas the spatial autocorrelations of deviance
residuals shown in Fig. 3(a) indicate that substantial spatial random effects are present in the
residuals.

The three spatial models accommodate the spatially correlated structure in the PLS data
through a covariance matrix of a latent spatial process. Indicator covariograms estimated for
individual tree species in Fig. 3(b) show that the spatial distributions of all three tree taxa have a
semivariogram range between 0.7 and 2.5 km. This range most likely is influenced by the 0.8 km
spacing of the sample points because local-scale variability (less than 0.8 km) of the tree species
distributions is not measured using witness tree data alone. The indicator covariograms also
reveal differences in the microscale variability of each tree species’ distribution, quantified by the
semivariogram nugget effects. Post oak has the highest variability (0.22), followed by black oak
(0.16) and elm (0.11), which reflects the class proportion in the data: a higher class proportion
results in higher spatial variability at a microscale.

Spatial predictions and model validation
Presettlement patterns of tree species abundance are retrieved from the four witness tree predic-
tion models over a grid cell of 30 × 30 m. Fig. 4 presents the predicted species occurrence

Table 4 Sensitivity of the Multinomial Logit Model Fit to Covariate Inclusion

Covariates* Deviance statistics

X1, X2, X3, X4 6,050
X2, X3, X4 6,055
X1, X3, X4 6,097
X1, X2, X4 6,118
X1, X2, X3 6,120
X1, X2 6,333
X1, X3 6,167
X1, X4 6,166
X2, X3 6,130
X3, X4 6,102
X1 6,382
X2 6,359
X3 6,177
X4 6,173

*See Table 1 for the definition of covariates.
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probabilities for post oak, black oak, and elm (in each column) from the four prediction models
(in each row). Using witness tree data alone, prediction at such a fine resolution could result in
the loss of prediction accuracy due to the sparse sampling scheme of the PLS data. Because tree
data in Oklahoma were collected at 0.8 km (quarter-mile) intervals, typical in the PLS system (He
et al. 2000), only a fraction of the point observations (approximately 0.07% of point pairs) are
less than 0.4 km apart. When sufficient data are unavailable, a reliable variogram is hard to
establish, and consequently, the quality of spatial predictions at small scales is deteriorated.
However, given that all four environmental covariates considered are available at such a fine
resolution (30 × 30 m), we represent the landscape heterogeneity of the reconstructed presettle-
ment of historic vegetation at a finer resolution than available with the PLS data.

Fig. 4(a), (d), (g), and (j) presents the four reconstructed species occurrence probabilities for
post oak. The Model I prediction of post oak occurrence probabilities in Fig. 4(a) shows the
effects of geology and soil conditions, while the Model II predictions in Fig. 4(d) clearly reveal
the spatial configuration of the PLS data (the presence of post oak denoted by dark shade, and
absence denoted by white shade). All three spatial model predictions show a mix of dark and
white shades with varying sizes and different magnitudes: Model II yields higher post oak
occurrence probabilities than the other three models across the study area, with minimum spatial
continuity (the pattern changes rapidly), whereas Model III and IV predictions tend to smooth the
high probabilities by accommodating other information, such as the presence of the other two
taxa and the local environmental conditions to which the prediction location belongs. Spatial
effects models (Models II and III) rely only on the witness tree data and their spatial structure, but
apparently their alternative representation (data coding) leads to different prediction maps.
Furthermore, the predictions obtained with Model II reveal some limitations of the traditional
indicator approach; that is, predicted probabilities are not necessarily within [0, 1]. The circle and
cross symbols in Fig. 4(d), (e), and (f) for post oak, black oak, and elm indicate the locations
whose predicted probabilities are above 1 and below 0, respectively. In addition, no guarantee
exists that the sum of predicted probabilities at each prediction location is equal to 1. Model IV
predictions in Fig. 4(j) indicate that the southern portion of the study area is the post oak
concentration region. Spatial concentration of high occurrence probabilities in this region also

Post oak
Black oak
Elm
Other type

(a) (b)

Figure 3. (a) Empirical covariograms of the multinomial regression residuals (deviance residu-
als). (b) Empirical indicator covariograms of the three most abundant tree taxa and other type.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 4. Predicted species occurrence probabilities: each column per tree species and each row
per model. Predicted probabilities of post oak presented in the first column are obtained from (a)
Model I, (d) Model II, (g) Model III, and (j) Model IV, respectively. The second (b, e, h, k) and
third (c, f, i, l) columns tabulate predicted probability maps of black oak and elm, respectively. (m)
The legend shared by the 12 maps. The symbols circle (o) and cross (x) in (b), (e), and (h) denote
Model II-predicted probabilities greater than 1 and negative, which is meaningless, respectively.
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gradually shifts to nearby areas. The favorable environmental conditions for post oak, such as
shale and Bromide sandstone, in addition to the PLS survey data might create such large spatial
clusters, but the kernel approach used in the mixed spatially correlated multinomial model results
in a smoothly varying probability surface.

Fig. 4(b), (e), (h), and (k) presents the black oak occurrence probability predictions. All four
model predictions for black oak are lower than the predicted probability of post oak occurrence,
except for small clusters of high probability zones in the central and northern portions of the
study area (see Fig. 4(e) and (k)). The surface formation favorable to post oak, such as shale/
limestone and Bromide sandstone, does not have the same effects on black oak. In contrast, the
soil type Shidler-Scullin-rock outcrop-Lula-Claremore shows a strong correlation with black oak,
as shown in Fig. 4(b). The indicator kriging model (Model II) prediction in Fig. 4(e) shows high
probabilities of black oak occurrences at small scales with negative estimates of some probabili-
ties (denoted by cross symbols). These negative probabilities are due to the PLS tree data; that is,
the presence or absence of black oak across a number of small patches. Both Models III and IV
smooth such abrupt changes, where Model IV in Fig. 4(k) enhances the higher and lower
probability zones informed by environmental conditions.

Fig. 4(c), (f), (i), and (l) portrays the elm occurrence probabilities obtained from the four
prediction models. All four models reconstruct its relatively high concentration in the northeast
part of the study area, which is dominated by the Shidler-rock outcrop soil type. In general, the
occurrence probabilities for elm are low, which reflects its small proportion of PLS data (12%).
Similar to predictions for the two oaks, Model II produces unacceptable probabilities; that is, out
of the range [0, 1]. The Model II predictions of elm occurrence probability in Fig. 4(c) are not as
smooth as those of the two oaks as shown in Fig. 4(d) and (e). This difference is due to the spatial
structure model used for elm, such as a shorter semivariogram range than those of the two oaks
(see Fig. 3(b)).

In summary, all four models reconstruct the dominant distribution of post oak in the south,
small clusters of black oak in the north, and a small patch of elm concentrated in the northeast
corner of the study area. The difference between the indicator kriging model (Model II) and the
mixed spatially correlated models (Models III and IV) lies in the degree of smoothness of high
and low probabilities: Model II tends to depict the spatial patterns based on the witness tree data
specific to a single species whereas mixed multinomial models tend to integrate various sources
of information and yield a smoother pattern. All spatial models allow one to identify areas with
higher prediction uncertainties (0.3 and 0.4), which are due to their distant location from survey
points and less significant relationships with environmental covariates.

The predicted class-occurrence probabilities for the three tree taxa are further processed to
identify a class with the maximum posterior probability (to recover the tree species that is likely
to have been present at the prediction location). Fig. 5 depicts the species prediction maps
obtained from the four models, which are overlaid with the forest-woodland boundary delineated
from the 1870’s PLS plats by Fagin (2009). When the three dominant tree taxa occurrence
probabilities are small, a pixel is classified as other type. Model I associates other type with
Shidler-Scullin-rock outcrop-Lula-Claremore while the other spatial models predict other-type
species in areas where observed data are scarce.

The uncertainty associated with each species occurrence probability increases as the distance
between prediction points and the data of species incidence increases. Consequently, the class
with the maximum posterior probability becomes none of the three species of interest. The
environmental regression models (Models I and IV) tend to overestimate post oak and to
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underestimate the specie’s diversity. The proportion of post oak occurrences obtained with
Models I and IV are 90% and 81%, respectively, while those for the spatial effect models are 72%
(Model II) and 55% (Model III). Assuming that the survey data reflect the true distribution of
trees in the 1870s and that the data-driven global proportion of post oak is 48%, Model III
outperforms the other specifications.

We further assessed the predictive power of the four models using cross-validation. We
segregated the data into validation and training sets. Validation data consist of a subset (10%) of
observed witness tree data, which are withheld in the model fitting process and later used to
validate model outcomes. In other words, only the training data are used for model fitting. The
size of the validation data set may be insufficient for an effective accuracy assessment of the
models, and sectional bias might be involved in the data-splitting process. Therefore, we repeated
the validation process iteratively (100 times) so that new sets of training and validation data were
randomly selected with each iteration, and model accuracy was calculated based on new model
fits and new validation data. At each iteration, the predicted probabilities are computed at newly

(a) (b)

(c) (d)

(e)

Post oak Black oak Elm Other type

Figure 5. Predicted species occurrences: (a) multinomial logit model (Model I); (b) simple
indicator kriging model (Model II); (c) mixed spatially correlated multinomial logit model with
no covariates (Model III); (d) mixed spatially correlated multinomial logit model with covariates
(Model IV).
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selected validation data locations (n = 255) as if the tree species at those locations are unknown
using the remaining sample data (n = 2,292) with four prediction models. Finally, the class with
the maximum posterior probability at the 255 locations is compared with the observed tree
species. Per iteration, a correct classification ratio is calculated as the proportion of the total
number of validation points with a correct classification. The result is summarized with boxplots
(see Fig. 6). The mixed spatially correlated multinomial model with covariates (Model IV) is
superior to the other three models. The other two multinomial models (Models I and III) have
better prediction accuracy than the traditional indicator model (Model II). The average accuracy
of Model IV is 60%, with a variability of 55%–70%, whereas the average prediction accuracy for
the other models is below 50%. This variability of accuracy implies that the model prediction
accuracy depends on the quality of observed data and the spatial configuration of prediction
points. The spatial clustering of training data and the location of validation data play an important
role in prediction accuracy. This result implies that the indicator coding of multicategorical data
may cause the loss of prediction accuracy, and the synthesis of spatial dependence of witness tree
data combined with environmental covariates yields the best prediction accuracy. Our results also
indicate that the environmental regression model (Model I) performs as well as or better than the
spatial effects models. However, caution should be exercised in generalizing our findings because
the prediction and model fit of the environmental regression model depends on the influence of
the selected environmental covariates on the witness tree data and the degree of spatial autocor-
relation of the PLS data. Finally, the number of classes considered also is an important factor to
consider in model comparisons.

Conclusion

In attempting to reconstruct presettlement forest vegetation using PLS witness tree data, we
propose a model that incorporates both environmental covariates and the spatial dependence of

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Model I Model II Model III Model IV

Figure 6. The correct classification ratio for the four prediction models. The line at the center of
the boxes denotes the median correct classification ratio, and the edges of each box denote 75%
and 25% quantiles. The extreme outliers are denoted by a plus (+) sign.
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witness tree data. The proposed mixed spatially correlated multinomial logit model allows
researchers to investigate the relationship between the location-specific relative abundance of
witness tree species and the environmental conditions to which witness tree species respond
within the context of spatial effects. One approach to incorporate such spatial effects, typically
modeled by a variance–covariance model with complex structural dependence, in GLMMs is by
introducing latent spatial process. Various techniques are available that allow us to incorporate
such complex spatial dependence information within the paradigm of latent spatial variables, but
we followed the work of Cao, Kyriakidis, and Goodchild (2011) due to its flexibility in terms of
accommodating covariates and its efficiency in terms of incorporating spatial effects in these
covariates.

The quantitative and qualitative evaluation of the proposed approach was conducted on the
basis of a correct classification ratio and the reproduction of species diversity in the predicted
class occurrence. To measure effectively the influence of spatial random effects and fixed effects
(environmental covariates) on model performance, we designed a four-model comparison study.
The four witness tree prediction models include (1) an aspatial environmental regression model
(Model I); (2) a traditional indicator kriging model (Model II); (3) a mixed spatially correlated
effects model with no predictors (Model III); and (4) a mixed spatially correlated effects model
with environmental covariates (Model IV). Model predictions consist of two steps: first, species
occurrence probability is predicted for a location from each of the four models; second, the set
of species occurrence probabilities at each prediction location is further processed to identify the
species with the maximum species occurrence probability.

In the cross-validation study, we compare the class of the observed tree species with the
maximum species occurrence probability prediction at validation data locations, and determine
the ratio of the total number of correct classifications. To avoid the selection bias of validation/
training data, this evaluation was iteratively performed using a randomly selected training/
validation data set. The results show that Model IV is superior to the other three models in terms
of the correct classification ratio, and that Models I and III rank second. This result comes as no
surprise in that the effects of the environmental covariates on the spatial distribution of the
selected tree species are nontrivial, and substantial spatial effects are present in the deviance
residuals.

From the species occurrence map for the study area obtained with the four prediction
models, we assess model performance via the reproduction of species diversity. To assess species
diversity, we compare the global proportion of each species. The result indicates that Model III
performs the best, while the other three models tend to overestimate the most abundant tree
species, post oak. Model III tends to smooth the species occurrence probability where observed
data are unavailable whereas Model IV enhances the smooth probabilities with the support of
environmental covariates. Both the strong association between post oak occurrences, geology,
and soil information, and the large widely spread post oak data contribute to the overestimation
by Model IV for post oak occurrence, which leads to underestimation of the other minor species.

In summary, the landscape structure of the study area determines the relative contributions
of each factor—environmental conditions and the spatial autocorrelation present in tree
occurrences—on the predictive power of a proposed model. In particular, the performance of the
multivariate environmental regression models (Models I and IV) heavily depends on the quality
of selected covariates. How strong or weak the relationship is between multicategorical witness
tree data and the selected covariates determines the accuracy of model predictions. Meanwhile,
a strong spatial autocorrelation in witness tree data alone may produce as accurate class
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predictions as other models, as shown by both spatial effects models (Models II and III).
Differences between a traditional indicator kriging model and a mixed spatially correlated
multinomial model are discussed from both conceptual and practical perspectives. Indicator
kriging is the simplest form of a mixed multinomial regression model where the response
outcome has only one category. We also demonstrate the limitations of taking an indicator kriging
approach where each species is taken separately in a case study. The predicted probabilities of
species occurrences are not necessarily bounded between 0 and 1, nor is the sum of total
predicted class-occurrence probabilities per species equal to 1. Furthermore, a loss of efficiency
occurs in collapsing multiple categories in the sense that larger standard errors result, which is
more severe, when observations are unevenly spread across the categories (Agresti 2007). The
contribution of incorporating environmental conditions to model PLS witness tree species dis-
tributions is clearly demonstrated by comparing the predictive power of Model IV to that of
Model III. Given that the influence of each source of information on the predictive power of a tree
model is highly regional and landscape dependent, a flexible modeling approach should be
employed in which various sources of information obtained from multiple sources are simulta-
neously integrated while their redundancy and correlation are taken into account.

Future work will include (1) incorporating environmental covariates as a stochastic process
to account for error-corrupted predictors; (2) evaluating model performance under the different
scenarios using simulated data; (3) imposing additional constraints on the mixed spatially
correlated model (e.g., coherence constraint to reproduce the global proportion); (4) taking into
account spatial scale disparity, how to resolve the scale differences between tree data points,
environmental covariates, and target prediction resolution; and (5) investigating species
co-occurrence over nonpoint support.

Notes

1 Given an n-dimensional vector x = [x1, . . . , xn]T, the Lp norm of x is defined as x p i

n

i
p px= ( )∑

1

. L1 and
L2 norms are particularly defined by setting P = 1 and P = 2, respectively (Meyer 2000).

2 The L2 norm, also called the Euclidean norm, relates to the Euclidean distance from the origin to the
point x.
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